LightBlog

mercredi 4 décembre 2019

The FCC is calling out T-Mobile and Verizon for bad coverage maps

If you’ve ever thought about switching carriers, you’ve likely spent some time looking at coverage maps. These maps are extremely important tools for consumers, but they are controlled by the carriers. They are required to keep these maps accurate and the FCC recently discovered some of the carriers are lying.

The FCC tested T-Mobile, Verizon, and US Cellular with 10,000 miles of driving and 25,000 tests. The results ended up being far below the coverage that the carriers were claiming. T-Mobile and Verizon didn’t match the minimum download speeds in 35% of the tests. US Cellular fared even worse, failing to match the speeds in over 50% of tests. The FCC also found that in areas where 4G LTE was listed on the maps, T-Mobile failed to provide it more than 1/5 of the time, while Verizon was slightly better and US Cellular was worse.

This is obviously a pretty big deal. Coverage maps are important when you’re trying to figure out where you’ll get coverage. They can be the difference between choosing one carrier over the other. If you can’t trust the coverage map, how are you supposed to know where you’ll have good coverage? It can especially be annoying if you have bad coverage and the carrier repeatedly tells you it should be fine.

So what is the FCC going to do? The report recommends an Enforcement Advisory, which will lay out a list of warnings and consequences. The FCC will also continue to investigate the situation, so we probably aren’t hearing the last about this.


Via: Android Central

The post The FCC is calling out T-Mobile and Verizon for bad coverage maps appeared first on xda-developers.



from xda-developers https://ift.tt/2LoVSYR
via IFTTT

Galaxy Buds+ could be Samsung’s new wireless earbuds with noise cancellation

The Samsung Galaxy Buds have been a sneaky good option in the truly wireless earbuds space. Announced alongside the Galaxy S10, Samsung has been pushing the Buds hard and people seem to like them a lot. Samsung got into the wireless earbud game early, but they aren’t slowing down. We’re starting to hear rumblings about the next version, which will reportedly have a “+” tacked on to the name.

The Galaxy Buds+ name was first revealed by @evleaks earlier this week. SamMobile has now discovered that Samsung has started published support pages for the earbuds. The existence of support pages doesn’t necessarily mean we’ll see the earbuds soon, but it’s a good sign. Samsung could be planning to announce them alongside the Galaxy S11 series.

Now, we don’t know anything about what brings the “+” to the Galaxy Buds+, but there are some obvious possibilities. Apple just released the AirPods Pro with active noise cancellation, and that seems like a feature we could see in Samsung’s next earbuds. Evan’s tweet did mention the AirPods Pro, but we can’t put too much merit into that. Whatever the upgraded features will be, we can expect some improvement over the standard earbuds.


Source 1: @evleaks | Source 2: SamMobile

The post Galaxy Buds+ could be Samsung’s new wireless earbuds with noise cancellation appeared first on xda-developers.



from xda-developers https://ift.tt/2OMRLb8
via IFTTT

Motorola One Hyper with 64MP rear camera, 45W charging launched for $399

Even throughout changes made to the company’s lineup and business tactics/strategies, Motorola phones remain a fan favorite for some people. While they’re no longer as affordable as they were in the past, and while software updates aren’t nearly as frequent as they used to be, their relative developer-friendliness, close-to-stock Android software, and brand familiarity have managed to keep the company afloat. They recently came back to the public spotlight with the Motorola Razr 2019, a refresh of a classic Motorola icon which brings foldable displays to a friendlier, more common form factor. And the company is definitely not done yet, as the launch of the Motorola One Hyper demonstrates.

As previously leaked, the Motorola One Hyper, just like previous Motorola One devices, is all about bringing new things to the table–or at least things that are new to Motorola phones. The device features several new features such as a 64MP camera, like devices from Xiaomi and Realme have included, as well as a pop-up front-facing 32MP camera that hides under the display, just like other implementations we’ve seen before, and eliminates the need for a display notch and, thus, allows for a fully bezel-less display. The device is powered by the Qualcomm Snapdragon 675 processor with up to 4 GB of RAM and 128 GB of storage–definitely not a lot, but since it’s a mid-range device, we can’t ask for much here.

The phone also has a 3600 mAh battery which, while beefy, is not a lot compared to other devices in the same price range, but Motorola is also including support for 45W charging for ultra-quick top-ups, so you should always have plenty of battery with you.

Motorola One Hyper XDA Forums

The Motorola One Hyper is now available starting today for $399 in the United States, where it will be sold exclusively through Motorola’s own online store, as well as in several markets across Europe and Latin America. The phone is available in three colors: Deepsea Blue, Dark Amber, and Fresh Orchid. Are you excited about the Motorola One Hyper? Let us know down in the comments below.


Source: Motorola

The post Motorola One Hyper with 64MP rear camera, 45W charging launched for $399 appeared first on xda-developers.



from xda-developers https://ift.tt/2LkCcFp
via IFTTT

Qualcomm announces the Snapdragon 765 with the Snapdragon X52 5G modem and support for 120Hz displays and 192MP cameras

Facing increased competition from MediaTek, Huawei, and Samsung in price and spec-conscientious markets like India and China, Qualcomm created a new Snapdragon 700 series of upper mid-range chipsets last year. The 700 series brings the best of Qualcomm’s premium 800 series but at a lower price point. The most recent iteration, the Snapdragon 730, even introduced a gaming variant to meet the growing demand of the mobile gaming industry. Now, Qualcomm is once again introducing a new member to the 700 series: the Qualcomm Snapdragon 765. The new SoC brings support for 5G connectivity, high refresh rate displays, and high-quality imaging to the mid-range price tier.

In India, China, and other parts of Asia, phone makers like Xiaomi, Realme, OPPO, Huawei/Honor, Vivo, Lenovo/Motorola, and Samsung are locked in a competition to see who can deliver the best specifications at the best price. The cost of the SoC, of course, factors into how low a brand can price their smartphone, which is why we see a lot of mid-range smartphones with Qualcomm’s latest 600 series SoC or one of MediaTek’s Helio P series SoCs.

In between this range and the premium flagship tier is where the upper mid-range devices like the Xiaomi Mi 9T, Realme X2, Redmi Note 8 Pro, Xiaomi Mi Note 10, Honor 9X, and Samsung Galaxy A80 come in. These devices have features that were previously exclusive to the flagship tier, such as 3+ cameras, an ultra high-resolution main camera, 6+GB of RAM, and very fast wired charging. With the Qualcomm Snapdragon 765, next year’s upper mid-range devices could have features like 120Hz displays, 5G network support, 12GB of RAM, super slow motion video, and more. Here’s how the Snapdragon 765 could make that happen.

Disclaimer: Qualcomm sponsored my trip to Maui, Hawaii, to attend the Snapdragon Tech Summit. The company paid for my flight and hotel. However, they did not have any input regarding the content of this article.

To begin with, here’s a table I made compares the Snapdragon 730 with the new Qualcomm Snapdragon 765. The table may be hard to follow if you’re not already familiar with most of the terms. Underneath the table, I have provided explanations of all the year-on-year improvements and new features.

Qualcomm Snapdragon 730 (sm7150-AA) Qualcomm Snapdragon 765 (sm7250-AA)
CPU 2x Kryo 470 (ARM Cortex-A76-based) Performance cores @ 2.2GHz

6x Kryo 470 (ARM Cortex-A55-based) Efficiency cores @ 1.8GHz

1x Kryo 475 (ARM Cortex-A76-based) Prime core @ 2.3GHz (2.4GHz on 765G)

1x Kryo 475 (ARM Cortex-A76-based) Performance core @ 2.2GHz

6x (ARM Cortex-A55-based) Efficiency cores @ 1.8GHz

GPU Adreno 618 @ 500MHz
Vulkan 1.1
Video playback: H.264 (AVC), H.265 (HEVC), VP8, VP9, 4K HDR10 PQ, HLG
Adreno 620 (15% speed-binned GPU on 765G)
Vulkan 1.1
Video playback: H.264 (AVC), H.265 (HEVC), VP8, VP9, 4K HDR10, HLG, HDR10+, Dolby Vision
Select Snapdragon Elite Gaming Features (765G only)
20% better performance and efficiency
Display Maximum On-Device Display Support: FHD+ @ 120Hz
Maximum External Display Support: UHD @ 60Hz
HDR support
DisplayPort over USB Type-C support
Maximum On-Device Display Support: FHD+ @ 120Hz, QHD+ @ 60Hz
Maximum External Display Support: UHD @ 60Hz
HDR support
DisplayPort over USB Type-C support
AI Hexagon 688 with Hexagon Vector eXtensions and Hexagon Tensor Accelerator
4th generation AI Engine
Hexagon 696 with Hexagon Vector eXtensions and new Hexagon Tensor Accelerator
5th generation AI Engine
Qualcomm Sensing Hub
5.5 TOPS (765G)
Memory Type: 2 x 16-bit, LPDDR4
Speed: Up to 1866MHz, 8GB RAM
Type: 2 x 16-bit, LPDDR4
Speed: Up to 2133MHz, 12GB RAM
1MB system cache
ISP Dual 14-bit Spectra 350 ISP
Single camera: Up to 36MP with ZSL; Up to 192MP
Dual camera: Up to 22MP with ZSL
Video capture: 4K HDR @ 30 fps video; Slow motion up to 720p@240 fps; HDR10, HLG
Dual 14-bit Spectra 355 ISP
Single camera: Up to 36MP with ZSL; Up to 192MP
Dual camera: Up to 22MP with ZSL
Video capture: 4K HDR @ 30 fps video; Slow motion up to 720p@480 fps; HDR10, HDR10+, HLG
Modem Snapdragon X15 LTE modem
Downlink: 800Mbps (4G LTE)
Uplink: 150Mbps (4G LTE)
Snapdragon X52 4G LTE and 5G multimode modem
Downlink: 3.7Gbps (5G), 1.2Gbps (4G LTE)
Uplink: 1.6Gbps (5G), 210Mbps (4G LTE)
Modes: NSA, SA, TDD, FDD
mmWave: 400MHz bandwidth, 8 carriers, 2×2 MIMO
sub-6 GHz: 100MHz bandwidth, 4×4 MIMO
Charging Qualcomm Quick Charge 4+ Qualcomm Quick Charge 4+
Qualcomm Quick Charge AI
Connectivity Location: Beidou, Galileo, GLONASS, GPS, QZSS, SBAS

Wi-Fi: Wi-Fi 6; 2.4/5GHz Bands; 20/40/80 MHz Channel; DBS, TWT, WPA3, 8×8 MU-MIMO

Bluetooth: Version 5.0, aptX TWS and Adaptive

Location: Beidou, Galileo, GLONASS, GPS, QZSS, SBAS, Dual Frequency support

Wi-Fi: Qualcomm FastConnect 6200; Wi-Fi 6 ready; 2.4/5GHz Bands; 20/40/80 MHz Channels; DBS, TWT, WPA3, 8×8 MU-MIMO

Bluetooth: Version 5.0, aptX TWS and Adaptive

Manufacturing Process 8nm LPP from Samsung 7nm EUV from Samsung

Qualcomm Snapdragon 765 SoC

CPU

The Snapdragon 765 features minor improvements in CPU performance compared to the Snapdragon 730. That’s because there aren’t any major architectural changes to the CPU cores. Instead, Qualcomm added a new “Prime” CPU core cluster consisting of a lone core clocked at up to 2.3GHz. There’s also a lone “Performance” core clocked at up to 2.2GHz. Qualcomm says these two cores are based on its customized Kryo 475 architecture, which is derived from the ARM Cortex-A76 design. Lastly, there are 6 ARM Cortex-A55-based Efficiency CPU cores clocked at up to 1.8GHz. Thus, the core cluster configuration of the Snapdragon 765 is 1+1+6 compared to 2+6 on the Snapdragon 730.

It is likely that the transition from an 8nm manufacturing process to a 7nm manufacturing process yields some improvements in CPU power efficiency, and thus, average performance.

GPU

Qualcomm’s new Adreno 620 GPU in the Snapdragon 765 supposedly offers 20% better performance and efficiency compared to the Adreno 618 GPU in the Snapdragon 730. We don’t know the maximum clock speed of the GPU or any other details that might explain the increase in performance and efficiency, but again, it’s likely that the transition from an 8nm to a 7nm manufacturing process yielded some benefits in those regards.

Qualcomm added support for HDR10+ and Dolby Vision video playback in the Adreno 620. The Adreno 618, in comparison, only supported 4K HDR10 PQ.

Display

One of the best capabilities of the new Snapdragon 765, according to Qualcomm, is the fact that it supports on-device displays up to FHD+ resolution and a 120Hz refresh rate. The GPU is largely responsible for pushing pixels to the display, and with higher resolutions and refresh rates, there are a lot more pixels to push.

So far, high refresh rate panels have been exclusively found in premium flagship smartphones. However, the Snapdragon 835-powered Razer Phone had a 120Hz display back in 2017, and this year alone we’ve seen nearly a dozen smartphones with high refresh rate displays. It’s only a matter of time until the first upper mid-range device launches with one, and when it does, it’ll likely be powered by the Qualcomm Snapdragon 765. Interestingly, Qualcomm confirmed to us that the GPU in the Snapdragon 730 is already capable of supporting FHD+ @ 120Hz, but we don’t know how much more capable the Snapdragon 765 is at sustaining 120fps than the Snapdragon 730.

AI

Qualcomm’s advancements in on-device artificial intelligence are best seen each year in the new Snapdragon 800 series, but the company has been bringing some of these advancements down to the Snapdragon 700 series as well. Qualcomm doubled the AI performance of the Snapdragon 730 versus the Snapdragon 710 by introducing their 4th generation AI Engine, adding more ALUs in the GPU, improving dot product instruction performance in the CPU, and adding their Hexagon Tensor Accelerator (HTA).

Qualcomm is continuing to improve the AI performance in the Snapdragon 700 series with the introduction of their 5th generation AI Engine and a newer Hexagon Tensor Accelerator in the Snapdragon 765. Overall, the Snapdragon 765G SoC is capable of 5.5 TOPS (trillions of operations) performance, closing in on the Snapdragon 855’s 7 TOPS performance.

A discrete component called the “Qualcomm Sensing Hub” has also been announced. The Sensing Hub is designed for always-on detection of audio with support for multiple hotwords such as “Hey/Okay Google” and “Alexa.” Utilizing <1 mW of power, the chip’s power drain is basically negligible. As the sensor’s framework is scalable, developers can use Qualcomm’s Hexagon SDKs to create their own audio-activated features.

ISP

While the Spectra ISP in the Snapdragon 800 series has received a huge bump in performance and functionality with this generation, the improvements in the Snapdragon 700 series are more modest. As far as we can tell, Qualcomm hasn’t disclosed any notable improvements in photography. Qualcomm boasts that the Snapdragon 765’s Spectra 355 ISP is capable of processing 192MP photos, but without ZSL at that resolution, don’t expect smartphone makers to ever allow you to capture full 192MP photos. Qualcomm did state that camera vendors are working on image sensors with these ultra high megapixel counts, though.

What we do know has changed in this generation is video capture. The Spectra 355 is capable of processing slow motion 720p videos at 480fps compared to the Spectra 350’s 720p@240fps support. In addition, the Spectra 355 adds support for video capture in HDR10+.

Connectivity

Modem

Qualcomm is aggressively positioning itself at the forefront of 5G technology, and they’re banking on the Snapdragon 765 to bring 5G-enabled smartphones to the masses. The Snapdragon 765 is Qualcomm’s first SoC with integrated 5G, meaning the 5G modem is on the die. This results in lower power consumption as the smartphone won’t have to provide power for a discrete modem. However, that doesn’t mean the Snapdragon 765 is superior at 5G connectivity compared to the Snapdragon 865.

The Snapdragon X52, like the Snapdragon X55, is a multi-mode modem, meaning it is capable of 2G, 3G, 4G LTE, and 5G (sub-6GHz and mmWave) connections. When comparing the specifications of the two modems, however, you’ll find that the Snapdragon X52 offers half the maximum theoretical 5G download speed (3.7Gbps vs 7.5Gbps), half the maximum theoretical 5G upload speed (1.6Gbps vs 3.0Gbps), half the mmWave bandwidth (400MHz vs 800MHz), and half the sub-6GHz bandwidth (100MHz vs 200MHz) compared to the discrete Snapdragon X55 modem paired with the Snapdragon 865. It’s a similar story for the 4G LTE speeds.

Snapdragon X52 modem

Yet, the mmWave 5G network roll out is still underway, so most users won’t be seeing 5G speeds that are anywhere close to the theoretical maximums anyway. What’s more important about the Snapdragon X52 is the fact that it supports global bands and has all the technology that Qualcomm has developed to improve throughput, reliability, and usability. Technologies like Dynamic Spectrum Sharing, global 5G roaming, multi-SIM 5G, 5G PowerSave, and Qualcomm Wideband Envelope Tracking are all implemented in the Snapdragon X52 modem, just to name a few.

Location

Like the latest 800 series chipsets, the Snapdragon 765 supports dual frequency GNSS, which can result in more precise location tracking if the smartphone has a chip capable of supporting multiple frequencies (L1+L5 or E1+E5a). This is the first Snapdragon 700 series chipset that supports this functionality.

Memory

As we’ve seen in some recent flagship devices, 4GB of RAM may not be enough to handle complex camera processing while having high-end mobile games and other apps in the background without killing one or more of these processes. The Snapdragon 730 already supports memory chips with a capacity of up to 8GB, but now the Snapdragon 765 supports a memory capacity of up to 12GB! Even better, the 765 supports memory speeds up to 2133MHz, a 267MHz increase over the 730. The increase in memory speeds may not account for much, but an extra 4GB of RAM can go a long way. Meanwhile, the premium Snapdragon 865 now supports LPDDR5 memory, thus raising the bar that the Snapdragon 700 series has to meet. Maybe next year.

Charging

Qualcomm’s latest fast charging technology is still a work-in-progress, it seems, as 27W Quick Charge 4+ is still the fast charge technology of choice for the Snapdragon 765. However, Qualcomm has added a new “Quick Charge AI” technology that supposedly extends the longevity of your smartphone’s battery. Compared to the Snapdragon 730, a device with the Snapdragon 765 will last for up to 200 more battery life cycles. Qualcomm did not share many details on how Quick Charge AI works, but it could be using dynamic voltage adjustment like USB-PD PPS (USB-Power Delivery Programmable Power Supply.)

But wait, there’s more! Meet the Qualcomm Snapdragon 765G

Qualcomm Snapdragon 765G logo

Catering to mobile gamers, Qualcomm again designed a variant of its latest Snapdragon 700 series chip with slightly more power and some gaming-centric features. The Snapdragon 765G is basically identical to the Snapdragon 765, but it has the following advantages:

  • Slightly higher single-core CPU performance (Prime core clock speed increased from 2.3 GHz to 2.4 GHz)
  • Slightly faster GPU performance (15% speed-binned)
  • Select Snapdragon Elite Gaming features (Game Smoother, Game Fast Loader, Game Network Latency Manager, Jank Reducer 2.0, Predictive Game Auto Tuner)

Qualcomm Snapdragon 765 complete feature list. Click to expand.

Qualcomm AI Engine

  • Adreno 620 GPU (15% speed-binned GPU on 765G)
  • Qualcomm® Kryo™ 475 CPU
  • Hexagon 696 Processor
  • Hexagon Vector eXtensions
  • Hexagon Tensor Accelerator
  • Qualcomm Sensing Hub
    • Ultra low power hub for audio, voice and sensors
    • Supports AI algorithms at low power
    • Support for fusing contextual data streams including sensors, audio and voice
    • Supports multiple voice assistants
    • Always-on multi-mic far-field detection and echo cancellation

5G Modem-RF System

  • Snapdragon X52 5G Modem-RF System – Modem to antenna integrated system for 5G multimode
  • 5G mmWave and sub-6 GHz, standalone (SA) and non-standalone (NSA) modes, FDD, TDD
  • Dynamic Spectrum Sharing
  • mmWave: 400 MHz bandwidth, 2×2 MIMO
  • Sub-6 GHz: 100 MHz bandwidth, 4×4 MIMO
  • Qualcomm® 5G PowerSave
  • Qualcomm® Smart Transmit™ technology
  • Qualcomm® Wideband Envelope Tracking
  • Qualcomm® Signal Boost adaptive antenna tuning
  • Global 5G multi-SIM
  • Downlink: Up to 3.7 Gbps (5G), 1.2 Gbps (LTE)
  • Uplink: Up to 1.6 Gbps (5G), 210 Mbps (LTE)
  • Multimode support: 5G NR, LTE including CBRS, WCDMA, HSPA, TD-SCDMA, CDMA 1x, EV-DO, GSM/EDGE

Wi-Fi & Bluetooth

  • Qualcomm® FastConnect™ 6200 Subsystem
    • Wi-Fi Standards: 802.11ax-ready, 802.11ac Wave 2, 802.11a/b/g, 802.11n
    • Wi-Fi Spectral Bands: 2.4 GHz, 5 GHz
    • Channel Utilization: 20/40/80 MHz
    • MIMO Configuration: 2×2 (2-stream) with MU-MIMO
    • 8-stream sounding (for 8×8 MU-MIMO)
    • Dual-band simultaneous (DBS)
    • Wi-Fi Security: WPA3-Enterprise, WPA3- Enhanced Open, WPA3 Easy Connect, WPA3-Personal
    • Target Wake Time (TWT)
  • Integrated Bluetooth
    • Bluetooth version: 5.0
    • Bluetooth Speed: 2 Mbps
    • Bluetooth audio: Qualcomm TrueWireless™ Technology, Qualcomm aptX Adaptive

Camera

  • Qualcomm® Spectra™ 355 Image Signal Processor
  • Dual 14-bit ISPs
  • Hardware accelerator for computer vision (CV-ISP)
  • Up to 192 MP capture
  • Up to 22 MP dual camera with Zero Shutter Lag
  • Up to 36 MP single camera with Zero Shutter Lag
  • Rec. 2020 color gamut video capture
  • Up to 10-bit color depth video capture
  • Slow motion video capture at 720p at 480fps
  • HEIF: HEIC photo capture, HEVC video capture
  • Video Capture Formats: HDR10+, HDR10, HLG
  • 4K HDR Video Capture with Portrait Mode (Bokeh)
  • Multi-frame Noise Reduction (MFNR)
  • Real-time object classification, segmentation and replacement

Audio

  • Hexagon Voice Assistant Accelerator for hardware accelerated voice signal processing
  • Qualcomm Aqstic™ audio codec (up to WCD9385)
    • Total Harmonic Distortion + Noise (THD+N), Playback: -108dB
    • Native DSD support, PCM up to 384 kHz/32-bit
    • Customizable “Golden Ears” filter
  • Qualcomm Aqstic smart speaker amplifier (up to WSA8815)

Display

  • On-Device Display Support:
    • QHD+ at 60Hz
    • FHD+ at 120Hz
  • Maximum External Display Support: UHD at 60Hz
  • 10-bit color depth, Rec. 2020 color gamut
  • HDR10 and HDR10+

CPU

  • Kryo 475, Octa-core CPU
  • Up to 2.3 GHz (765)
  • Up to 2.4GHz (765G)
  • 64-bit Architecture

Visual Subsystem

  • Adreno 620 GPU
  • Vulkan® 1.1 API support
  • 4K HDR10 PQ and HLG Video Playback (10 bit color depth, Rec. 2020 color gamut)
  • H.264 (AVC), H.265 (HEVC) VP8 and VP9 playback
  • Physically Based Rendering
  • API Support: OpenGL® ES 3.2, OpenCL™ 2.0 FP, Vulkan 1.1, DirectX 12

Security

  • Biometric Authentication: Fingerprint, Iris, Voice, Face
  • On-Device: Qualcomm® Mobile Security, Key Provisioning Security, Qualcomm® Processor Security, Qualcomm® Content Protection, Qualcomm® Trusted Execution Environment, Camera Security, Crypto Engine, Malware Protection, Secure Boot, Secure Token

Charging

  • Qualcomm Quick Charge 4+ technology
  • Qualcomm Quick Charge AI

Location

  • GPS, Glonass, BeiDou, Galileo, QZSS, and SBAS
  • Dual Frequency Support
  • Low Power Geofencing and Tracking, Sensor-assisted Navigation

General Specifications

  • Select Snapdragon Elite Gaming features including: Game Smoother, Game Fast Loader, and Game Network Latency Manager (765G)
  • Memory Speed: up to 2133 MHz, 12 GB RAM
  • Memory Type: 2 x 16-bit, LPDDR4x
  • Near Field Communications (NFC) support
  • DisplayPort over USB Type-C support
  • 7nm. Process Technology
  • Part Number: SM7250-AA (765)
  • Part Number: SM7250-AB (765G)

Mobile devices powered by the Snapdragon 765 series will be announced later this year and throughout 2020. Xiaomi’s Redmi K30 and OPPO’s Reno3 Pro have been confirmed to utilize the Snapdragon 765G, while HMD Global and Motorola have confirmed that they’re working on smartphones based on the 765 or 765G mobile platform. Devices with this SoC will mainly be sold in markets like India and China where mobile gaming is a huge market and smartphone competition is fierce, but we can expect to see at least a few devices powered by these chipsets to land in Europe.

The post Qualcomm announces the Snapdragon 765 with the Snapdragon X52 5G modem and support for 120Hz displays and 192MP cameras appeared first on xda-developers.



from xda-developers https://ift.tt/33K7En2
via IFTTT

Qualcomm announces the Snapdragon 865 with support for 5G, 200MP cameras, and 144Hz displays

Qualcomm’s Snapdragon chipsets are found in millions of Android smartphones and tablets thanks to the fact that Qualcomm designs chips for budget, mid-range, and premium mobile devices. Every December, Qualcomm hosts an event they call the Snapdragon Tech Summit where they announce their latest high-end mobile platforms. This year, the company has two new SoCs to show off: the Qualcomm Snapdragon 765 and the Qualcomm Snapdragon 865. The latter is the successor to the Qualcomm Snapdragon 855 that’s found in most flagship Android devices released in 2019, and it features major upgrades in key areas like the CPU, DSP, ISP, and modem.

With every new addition to the Snapdragon 800 series, we see year-on-year improvements that are within our expectations. What makes this year different is that the rest of the industry is finally catching up and making use of the chips’ full capabilities. 5G connectivity is no longer just a talking point – it’s already available in many cities and supported by a handful of devices. High megapixel, multi-camera devices are becoming the norm – the 108MP penta-camera Xiaomi Mi Note 10 immediately comes to mind. High refresh rate technology is now mainstream in the mobile industry as many of the big players add 90 or even 120Hz panels on their latest devices. With the new Qualcomm Snapdragon 865, we could see devices in 2020 have even higher megapixel cameras, faster refresh rate panels, and faster network connectivity than we’ve ever seen before.

There are many big generational changes that Qualcomm is highlighting this year, but there are also a lot of smaller improvements we’ve spotted while digging through the Snapdragon 865 specification sheet. Here’s everything you need to know.

Disclaimer: Qualcomm sponsored my trip to Maui, Hawaii, to attend the Snapdragon Tech Summit. The company paid for my flight and hotel. However, they did not have any input regarding the content of this article.

To start off, here’s a table I put together that extensively compares the previous generation Qualcomm Snapdragon 855 with the new Qualcomm Snapdragon 865. The table is dense and might be hard to follow if you’re not already familiar with most of these terms. Below the table, I’ve divided my explanations of the year-on-year improvements and new features into multiple sections.

Qualcomm Snapdragon 855 (sm8150) Qualcomm Snapdragon 865 (sm8250)
CPU 1x Kryo 485 (ARM Cortex A76-based) Prime core @ 2.84GHz, 1x 512KB pL2 cache

3x Kryo 485 (ARM Cortex A76-based) Performance cores @ 2.42GHz, 3x 256KB pL2 cache

4x Kryo 385 (ARM Cortex A55-based) Efficiency cores @ 1.8GHz, 4x 128KB pL2 cache

2MB sL3 cache

1x Kryo 585 (ARM Cortex A77-based) Prime core @ 2.84GHz, 1x 512KB pL2 cache

3x Kryo 585 (ARM Cortex A77-based) Performance cores @ 2.4GHz, 3x 256KB pL2 cache

4x Kryo 385 (ARM Cortex A55-based) Efficiency cores @ 1.8GHz, 4x 128KB pL2 cache

4MB sL3 cache
25% faster performance

GPU Adreno 640 @ 600MHz
Vulkan 1.1
Snapdragon Elite GamingVideo playback: H.264 (AVC), H.265 (HEVC), VP8, VP9, 4K HDR10, HLG, HDR10+, Dolby Vision
Adreno 650
Vulkan 1.1
Snapdragon Elite Gaming with new Desktop Forward Rendering, Game Color Plus, updatable GPU drivers
20% faster graphics rendering
35% more power efficientVideo playback: H.264 (AVC), H.265 (HEVC), VP8, VP9, 4K HDR10, HLG, HDR10+, Dolby Vision
Display Maximum On-Device Display Support: UHD
Maximum External Display Support: UHD
HDR support
DisplayPort over USB Type-C support
Maximum On-Device Display Support: UHD @ 60Hz, QHD+ @ 144Hz
Maximum External Display Support: UHD @ 60Hz
HDR support
DisplayPort over USB Type-C support
AI Hexagon 690 with Hexagon Vector eXtensions and Hexagon Tensor Accelerator
4th generation AI Engine
7 TOPS
Hexagon 698 with Hexagon Vector eXtensions and new Hexagon Tensor Accelerator
5th generation AI Engine
Qualcomm Sensing Hub
15 TOPS
Memory 4 x 16-bit LPDDR4 @ 2133MHz, 16GB
3MB system level cache
4 x 16-bit LPDDR4 @ 2133MHz, 16GB
LPDDR5 @ 2750MHz
3MB system level cache
ISP Dual 14-bit Spectra 380 ISP

Single camera: Up to 48MP with ZSL; Up to 192MP

Dual camera: Up to 22MP with ZSL

Video capture: 4K HDR @ 60 fps; Slow motion up to 720p@480 fps; HDR10, HDR10+, HLG

Dual 14-bit Spectra 480 ISP

Single camera: Up to 64MP with ZSL; Up to 200MP

Dual camera: Up to 25MP with ZSL

Video capture: 4K HDR @ 60 fps + 64MP burst images; 4K @ 120 fps; 8K @ 30 fps; Slow motion up to 720p@960 fps (unlimited); HDR10, HDR10+, HLG, Dolby Vision

Modem Snapdragon X24 4G LTE modem
Downlink: 2.0Gbps
Uplink: 316MbpsSnapdragon X50 5G modem
Downlink: 5.0Gbps
Modes: NSA, TDD
mmWave: 800MHz bandwidth, 8 carriers, 2×2 MIMO
sub-6 GHz: 100MHz bandwidth, 4×4 MIMO
Snapdragon X55 4G LTE and 5G multimode modem
Downlink: 7.5Gbps (5G), 2.5Gbps (4G LTE)
Uplink: 3Gbps, 316Mbps (4G LTE)
Modes: NSA, SA, TDD, FDD
mmWave: 800MHz bandwidth, 8 carriers, 2×2 MIMO
sub-6 GHz: 200MHz bandwidth, 4×4 MIMO
Charging Qualcomm Quick Charge 4+ Qualcomm Quick Charge 4+
Qualcomm Quick Charge AI
Connectivity Location: Beidou, Galileo, GLONASS, GPS, QZSS, SBAS, Dual Frequency support

Wi-Fi: Qualcomm FastConnect 6200; Wi-Fi 6 ready; 2.4/5GHz Bands; 20/40/80 MHz Channels; DBS, TWT, WPA3, 8×8 MU-MIMO

Bluetooth: Version 5.0, aptX TWS and aptX Adaptive

Location: Beidou, Galileo, GLONASS, GPS, QZSS, SBAS, Dual Frequency support

Wi-Fi: Qualcomm FastConnect 6800; Wi-Fi 6 certified; 2.4/5GHz Bands; 20/40/80 MHz Channels; DBS, TWT, WPA3, 8×8 MU-MIMO, OFDMA, 1024QAM

Bluetooth: Version 5.1, aptX TWS, aptX Adaptive, and aptX Voice

Manufacturing Process 7nm (TSMC’s N7) 7nm (TSMC’s N7P)

CPU

Qualcomm says the Snapdragon 865 offers 25% faster raw CPU performance and 25% better CPU power efficiency over the Snapdragon 855. How did they achieve this performance and efficiency uplift? Most likely due to the addition of newer ARM cores. The Qualcomm Snapdragon 865 features the same CPU core configuration (and even the same clock speeds and pL2 cache!) as the Snapdragon 855, but the lone Prime core and 3 Performance cores are now derived from the ARM Cortex-A77 design rather than the Cortex-A76. Qualcomm calls these new CPU cores the Kryo 585, though it’s unclear what customizations the Kryo 585 offers over the standard ARM Cortex A77 reference design. Last year’s Kryo 485 improved upon the ARM Cortex A76 design by introducing bigger out-of-order execution windows and reorder buffer, and more efficient data pre-fetchers.

ARM Cortex-A77ARM Cortex-A75 vs. Cortex-A76 vs Cortex-A77 single CPU core @ 3GHz benchmarked in SPEC int2006. Source: ARM.

GPU

For the new Adreno 650, Qualcomm touts impressive 20% faster graphics rendering and 35% greater power efficiency figures when compared to the Adreno 640 in last year’s Snapdragon 855. Qualcomm emphasizes that the new Adreno 650 allows for better sustained performance, meaning it’ll take longer before your games start dropping frames. Unfortunately, we don’t have many details on the intricacies of the Adreno 650 itself (such as its maximum clock speed), as Qualcomm is very protective of its custom GPU design. For good reason, too: the Adreno GPU has long outperformed ARM’s Mali GPU. Of course, we’ll have to benchmark the GPU performance on a Snapdragon 865 device to confirm if that’s still true with this generation.

As mobile games continue to grow in popularity and subsequently become more complex and performance intensive, Qualcomm is responding with a series of features under its “Snapdragon Elite Gaming” brand. Snapdragon Elite Gaming was introduced with the Snapdragon 855 last year, and it’s currently composed of features like Jank Reducer that aim to optimize the chipset’s operation during gaming. Now, Snapdragon Elite Gaming is adding support for 5 new features: Desktop Forward Rendering, Game Color Plus, updatable GPU drivers, Snapdragon Game Performance Engine, and Adreno HDR Fast Blend.

  • Desktop Forward Rendering: Qualcomm worked to bring this feature of the Unreal Engine to Android. It’s used by game developers for desktop-class dynamic shadows, planar reflections, motion blur, and other post-processing effects.
  • Game Color Plus: More and more smartphones have HDR-compliant displays. However, HDR content is still scarce, especially in mobile gaming. This feature converts the colors of mobile games from SDR to HDR but supposedly does so in an “intelligent” way as to not sacrifice color accuracy. Qualcomm promises “enhanced details, boosted color saturation and local tone mapping.” OPPO previously announced that they will be first to utilize this technology.

    Game Color Plus on PUBG Mobile: Left is Enabled, Right is Disabled

  • Updatable GPU drivers: Typically, updates to the GPU driver are packaged along with other updates before being sent OTA to users. New to the Snapdragon 865 BSP is the ability to update a separate GPU driver stub. If supported by the OEM, the user can download updates to the GPU driver directly from an app store. Google made this possible on the Android side with Project Treble, but we’ve yet to see many OEMs take advantage of this.
  • Snapdragon Game Performance Engine: Qualcomm didn’t provide many details on this feature, but the Snapdragon 865 press release states that “game play is now optimized to the micro-second level” with this feature, “providing adaptive and predictive real-time system tuning for sustained performance over longer periods of time.” It sounds like there could be some machine learning in use here – perhaps OEMs or developers can train models based on game play that, when deployed, adjust parameters to maintain peak performance, similar to how Huawei’s GPU Turbo works.
  • Adreno HDR Fast Blend: This is a new “hardware embedded” feature that can be used to improve performance by up to 2x (when compared to the Snapdragon 855) in scenes with heavy blending, such as when complex particles are rendered on screen.

Display

High refresh rate displays have been a staple of PC gaming for years – just look at how many 144Hz gaming monitors are out there – but the technology has finally taken off in the mobile space. The Google Pixel 4, OnePlus 7T, Realme X2 Pro, and OPPO Reno Ace were all recently released with 90Hz displays, while the ASUS ROG Phone II and Sharp Aquos R3 have 120Hz displays. While the ROG Phone II and Aquos R3 have smoother displays, they sacrifice on display resolution to achieve it. Displays with a high resolution and high refresh rate put a heavy strain on the GPU, but the Adreno 650 in the Snapdragon 865 is capable of pushing QHD+ resolution at 144Hz. We don’t know when a smartphone with a QHD+ 144Hz display will be available, but if one is already in the works, it’ll most likely be powered by the Snapdragon 865.

Qualcomm’s 3D Sonic technology, the company’s ultrasonic under-display fingerprint scanner, is still supported, but notably, the technology is getting a major upgrade. The newer version of the technology is called 3D Sonic Max and has a recognition area of 30mm by 20mm, 17x larger than before. Qualcomm says the accuracy is now 1::1,000,000 versus 1::50,000. The larger recognition area makes it possible for two fingers to be authenticated simultaneously, though in more practical terms, it’ll result in the user having an easier time finding where to place their finger on the sensor.

Qualcomm 3D Sonic Max

3D Sonic Max allowing for dual fingerprint authentication. Source: Qualcomm

Only Samsung used the 3D Sonic fingerprint scanner on the Galaxy S10 and Galaxy Note 10, so it’s possible the upcoming Galaxy S11 could feature the new 3D Sonic Max technology.

AI

Although a lot of what’s out there is snake oil, there are lots of legitimately impressive and useful features that take advantage of what we call “AI.” Take, for example, the Google Pixel 4’s automatic white balance adjustment and Astrophotography features. Google trained one model against a set of photos with and without good lighting, and they trained another model based on a set of photos of the starry sky. The result is that the Pixel 4 can infer what the best white balance setting should be to correct poor lighting (automatic white balance adjustment), and it can also segment the skyline from trees and other ground objects (Astrophotography). Both features require the kind of computational power provided by the Snapdragon’s Spectra ISP, Hexagon DSP, and Adreno GPU.

The combination of improvements to the GPU, DSP, and other blocks has provided an over 2x year-on-year boost in AI performance. While the Snapdragon 855 managed 7 TOPS (trillions of operations), the Snapdragon 865 manages 15 TOPS. This is thanks to the 5th generation AI engine in the Snapdragon 865. The biggest improvement in the 5th generation AI engine is the newer Hexagon Tensor Accelerator in the Hexagon 698 DSP. Qualcomm upgraded the HTA to provide over 4x TOPS performance while being 35% more power efficient.

Qualcomm designed a new component it’s calling the “Sensing Hub” that’s designed to efficiently detect audio. The Sensing Hub utilizes <1mW of power, allowing it to remain always-on at virtually no power cost. It supports multi-word wakeup, meaning it can react to “Hey Google” or “Alexa” hotwords to trigger Google Assistant or Amazon Alexa queries. The sensor framework is scalable, so it isn’t limited to just these use cases. For example, Qualcomm says the Sensing Hub could be used to listen for sounds indicative of driving, office work, movie theaters, etc. Developers can use the updated Qualcomm Neural Processing SDK, Hexagon NN Offload Framework, and Qualcomm AI Model Enhancer tools to create these and other features.

ISP

Arguably the biggest improvement in the Snapdragon 865 over the Snapdragon 855 is in the ISP. The new Spectra 480 ISP can process 2 Gigapixels per second. To take advantage of this increased processing performance, Qualcomm slowed down the clock cycles and started processing 4 pixels per clock cycle rather than 1 pixel per clock cycle. The result is improved power saving, better thermal efficiency, and 40% faster pixel processing for tasks like noise reduction. In addition, the Spectra 480 has a new Video Analytics Engine (EVA) to handle all Computer Vision (CV) tasks.

The “Gigapixel speed” of the Spectra 480 ISP makes it possible to capture 4K HDR video and 64MP burst images simultaneously. Qualcomm says the ISP can process images up to 200MP in size. This is not just a theoretical number, either, as Qualcomm says that smartphone image sensor vendors are indeed working on sensors with these ridiculously high megapixel counts. In more practical terms, however, the Spectra 480 is now capable of processing 64MP images with Zero Shutter Lag (from a single sensor.) That’s up from 48MP @ ZSL with the Snapdragon 855.

The Snapdragon 865 is also significantly more capable at video processing than the Snapdragon 855. For starters, the Snapdragon 865 now supports 8K resolution at 30fps. Next, the Spectra 480 is able to support 960fps slow motion videos at 720p resolution – without any time limits. 120fps slow motion at 4K video resolution is also possible. Lastly, the Spectra 480 now supports video capture in Dolby Vision HDR, even processing and converting colors on-the-fly, though OEMs will likely need to pay a licensing fee for it.

Connectivity

Modem

At last year’s Snapdragon Tech Summit, Qualcomm dedicated the entire first day to 5G. When they did so, 5G was still just a tech demo in our minds. Fast forward a year and we’ve seen both mmWave and sub-6 GHz 5G networks out in the real-world. In their rush to be the first to market, smartphone makers packed their first generation of 5G-enabled smartphones with Qualcomm’s years-old Snapdragon X50 5G modem. The X50 is certainly capable of impressive speeds, but it is manufactured using an older, less efficient process and supports fewer modes than the newer Snapdragon X55 modem.

The Snapdragon X55 was announced earlier this year as a 2G/3G/4G/5G multi-mode modem manufactured on a newer 7nm manufacturing process. It supports theoretical download and upload speeds of up to 7.5Gbps and 3.0Gbps respectively, Dynamic Spectrum Sharing (DSS), global 5G roaming, and 5G multi-SIM connectivity. In addition, the Snapdragon X55 supports SA (Standalone) 5G networks, mmWave and sub-6GHz in FDD frequencies, and has double the bandwidth at sub-6GHz frequencies. The Snapdragon X55 is, therefore, not only faster and more power efficient than the Snapdragon X50, but it also doesn’t need to be paired with a separate modem for 4G connectivity.

Qualcomm Snapdragon X55 and QTM525 mmWave antenna

While the Qualcomm Snapdragon 865 does support the Snapdragon X55 modem, it does not have this modem integrated into the SoC. We’ll likely see that happen with the next generation 800 series SoC. Furthermore, the Snapdragon X55 still requires the inclusion of Qualcomm’s QTM525 or QTM527 mmWave antennas in order to support mmWave 5G networks.

WiFi and Bluetooth

The Wi-Fi Alliance finalized the 802.11ax standard, better known as the Wi-Fi 6 specification, a while back, but so far, only the Samsung Galaxy S10 series and the Samsung Galaxy Note 10 series are Wi-Fi 6 certified. The Wi-Fi modem in the Snapdragon 855, contained in the Qualcomm FastConnect 6200 mobile connectivity subsystem, is “Wi-Fi 6 ready,” according to Qualcomm, while the new FastConnect 6800 in the Snapdragon 865 is “Wi-Fi Certified 6.” Whether that means all devices with the Snapdragon 865 will support Wi-Fi 6 remains to be seen, but at the very least, the FastConnect 6800 does bring new Wi-Fi features like OFDMA (Orthogonal frequency-division multiple access) to reduce network congestion and 1024QAM (Quadrature amplitude modulation) to improve throughput.

Bluetooth connectivity is also receiving a slight upgrade this generation. The FastConnect 6800 in the Snapdragon 865 now supports Bluetooth 5.1 as opposed to Bluetooth 5.0 in the Snapdragon 855’s FastConnect 6200. Version 5.1 of the specification notably introduces angles of arrival and departure for more precise, localized tracking of devices.

The Snapdragon 865 also supports Qualcomm’s new aptX Voice, a subset of the aptX Adaptive Bluetooth audio codec, allowing for Super Wide Band (32kHz) voice over Bluetooth for “a new class of crystal clear audio.” A newer version of aptX Adaptive supports 24-bit 96kHz audio and a bitrate of over 600kbps. Both OEMs and Bluetooth accessory makers will have to license aptX Voice and/or aptX Adaptive revision 2 for use in smartphones and accessories, respectively.

Memory

Companies like Samsung are finally mass producing LPDDR5 RAM modules for mobile devices, so it’s no surprise that the Snapdragon 865 supports LPDDR5 memory at up to 2750MHz. LPDDR5 is the latest specification that implements features like a dual differential clock system for increasing the frequency without increasing the pin count, a new deep sleep mode for better power consumption, and Link ECC to recover data from failed Read/Write operations.

Since apps and games are constantly swapped in and out of RAM, having faster RAM will result in faster app switching. Just like with the move from UFS 2.1 to UFS 3.0 storage, we won’t know how much a theoretical bump in memory performance will actually end up mattering. Expect to see premium flagship smartphones, likely from Samsung or OnePlus, to be the first to market with LPDDR5 RAM.

Charging

Qualcomm’s latest fast charging technology has, unfortunately, not made its way to the Snapdragon 865. Qualcomm’s Quick Charge 4+ is still available – so long as the OEM licenses it – for up to 27W of fast wired charging. While the charging speed won’t be getting a bump, the battery longevity might be. Qualcomm’s new Quick Charge AI promises the extension of battery life cycles so you can keep using your device for longer without having to buy a new phone or swap the battery (which is mostly impossible to do these days.)

We don’t have details on how Quick Charge AI extends the battery longevity, but it’s possibly dynamically adjusting the voltage like USB Power Delivery’s Programmable Power Supply (PPS). Compared to a similar device with the Snapdragon 730, Qualcomm says a device with the Snapdragon 765 and Quick Charge AI can last up to 200 additional battery life cycles. Comparable figures were not provided for the Snapdragon 855 versus Snapdragon 865, but we can guess they’ll be similar.

Qualcomm Snapdragon 865 complete feature list. Click to expand.

Artificial Intelligence

  • Adreno 650 GPU
  • Kryo 585 CPU
  • Hexagon 698 Processor
    • Hexagon Tensor Accelerator
    • Hexagon Vector eXtensions
    • Hexagon Scalar Accelerator
  • Qualcomm Sensing Hub
    • Ultra low power hub for audio, voice and sensors
    • Supports AI algorithms at low power
    • Support for fusing contextual data streams including sensors, audio and voice
    • Supports multiple voice assistants
    • Always-on multi-mic far-field detection and echo cancellation

5G Modem-RF System

  • Snapdragon X55 5G Modem-RF System
  • 5G mmWave and sub-6 GHz, standalone (SA) and non-standalone (NSA) modes, FDD, TDD
  • Dynamic Spectrum Sharing
  • mmWave: 800 MHz bandwidth, 8 carriers, 2×2 MIMO
  • Sub-6 GHz: 200 MHz bandwidth, 4×4 MIMO
  • Qualcomm® 5G PowerSave
  • Qualcomm® Smart Transmit™ technology
  • Qualcomm® Wideband Envelope Tracking
  • Qualcomm® Signal Boost adaptive antenna tuning
  • Global 5G multi-SIM
  • Downlink: Up to 7.5 Gbps
  • Uplink: Up to 3 Gbps (5G)
  • Multimode support: 5G NR, LTE including CBRS, WCDMA, HSPA, TD-SCDMA, CDMA 1x, EV-DO, GSM/EDGE

Wi-Fi & Bluetooth

  • Qualcomm® FastConnect™ 6800 Subsystem
    • Wi-Fi Standards: Wi-Fi 6 (802.11ax), 802.11ac Wave 2, 802.11a/b/g/n
    • Wi-Fi Spectral Bands: 2.4 GHz, 5 GHz
    • Peak speed: 1.774 Gbps
    • Channel Utilization: 20/40/80 MHz
    • 8-stream sounding (for 8×8 MU-MIMO) MIMO Configuration: 2×2 (2-stream)
    • MU-MIMO (Uplink & Downlink)
    • 1024 QAM (2.4 & 5 GHz)
    • OFDMA (2.4 and 5 GHz)
    • Dual-band simultaneous (DBS)
    • Wi-Fi Security: WPA3-Enterprise, WPA3- Enhanced Open, WPA3 Easy Connect, WPA3-Personal
  • Integrated Bluetooth
    • Bluetooth Version: Bluetooth 5.1
    • Bluetooth features: 1-to-many Bluetooth broadcast, up to 18dB link margin improvement
    • Bluetooth audio: Qualcomm® aptX™ Voice audio for super wide band voice calls, Qualcomm aptX Adaptive audio for robust, low latency, high quality audio, Qualcomm TrueWireless™, Qualcomm TrueWireless Stereo
  • Qualcomm 60 GHz Wi-Fi
    • Wi-Fi Standards: 802.11ad, 802.11ay
    • Wi-Fi Spectral Band: 60 GHz
    • Peak speed: 10 Gbps
    • Always-on ambient Wi-Fi sensing

Camera

  • Qualcomm® Spectra™ 480 Image Signal Processor
  • Dual 14-bit ISPs
  • Up to 2 gigapixels per Second
  • Hardware accelerator for computer vision (CV-ISP)
  • Up to 200 Megapixel Photo Capture
  • Up to 25 MP dual camera with Zero Shutter Lag
  • Up to 64 MP single camera with Zero Shutter Lag
  • Rec. 2020 color gamut video capture
  • Up to 10-bit color depth video capture
  • 4K Video Capture + 64MP Photo (5 burst)
  • 8K Video Capture
  • Slow motion video capture at 720p at 960fps
  • HEIF: HEIC photo capture, HEVC video capture
  • Video Capture Formats: HDR10+, HDR10, HLG, Dolby Vision
  • 4K Video Capture at 120fps
  • 4K HDR Video Capture with Portrait Mode (Bokeh)
  • Multi-frame Noise Reduction (MFNR)
  • Real-time object classification, segmentation and replacement

Audio

  • Hexagon Voice Assistant Accelerator for hardware accelerated voice signal processing
  • Qualcomm Aqstic™ audio codec (Up to WCD9385)
    • Total Harmonic Distortion + Noise (THD+N), Playback: -108dB
    • Native DSD support, PCM up to 384 kHz/32-bit
    • Customizable “Golden Ears” filter
  • Qualcomm Aqstic smart speaker amplifier (up to WSA8815)

Display

  • On-Device Display Support:
    • 4K at 60Hz
    • QHD+ at 144Hz
  • Maximum External Display Support: up to 4K at 60Hz
  • 10-bit color depth, Rec. 2020 color gamut
  • HDR10 and HDR10+

CPU

  • Qualcomm Kryo 585, Octa-core CPU
  • Up to 2.84 GHz
  • 64-bit Architecture

Visual Subsystem

  • Adreno 650 GPU
  • Vulkan® 1.1 API support
  • HDR gaming (10-bit color depth, Rec. 2020 color gamut)
  • Physically Based Rendering
  • API Support: OpenGL® ES 3.2, OpenCL™ 2.0 FP, Vulkan 1.1
  • Hardware-accelerated H.265 and VP9 decoder
  • HDR Playback Codec support for HDR10+, HDR10, HLG and Dolby Vision

Security

  • Secure Processing Unit: Mobile Payment, Dual SIM/Dual Standby
  • Qualcomm® 3D Sonic Sensor
  • Biometric Authentication: Fingerprint, Iris, Voice, Face
  • On-Device: Qualcomm® Mobile Security, Key Provisioning Security, Qualcomm® Processor Security, Qualcomm® Content Protection, Qualcomm® Trusted Execution Environment, Camera Security, Crypto Engine, Malware Protection, Secure Boot, Secure Token

Charging

  • Qualcomm Quick Charge 4+ technology
  • Qualcomm Quick Charge AI

Location

  • GPS, Glonass, BeiDou, Galileo, QZSS, and SBAS
  • Dual Frequency Support
  • Low Power Geofencing and Tracking, Sensorassisted Navigation
  • Near Field Communications (NFC): Supported

Memory

  • Support for LP-DDR5 memory up to 2750MHz
  • Support for LPDDR4x memory up to 2133 MHz
  • Memory Density: up to 16 GB

General Specifications

  • Full Suite Snapdragon Elite Gaming features
  • 7nm Process Technology
  • USB Version 3.1; USB Type-C Support
  • Part Number: SM8250

The smartphone industry has progressed rapidly this year, and the new Snapdragon 865 reflects those changes. 5G, high refresh rate displays, high megapixel cameras, and AI features will only continue to get more powerful and sophisticated, and Qualcomm’s latest premium SoC seems ready to handle the upcoming 2020 flagship smartphones. Xiaomi, OPPO, HMD Global (makers of Nokia-branded smartphones), and Motorola have already confirmed their plans on launch smartphones with the Snapdragon 865 mobile platform.

Qualcomm isn’t the only player out there with a premium SoC, however. MediaTek’s Dimensity 1000, Huawei’s HiSilicon Kirin 990, and Samsung’s Exynos 990 are all in the same tier as Qualcomm’s Snapdragon 865, so we’ll have to wait for commercial products to start shipping before we can declare one of these as the best mobile SoC.

The post Qualcomm announces the Snapdragon 865 with support for 5G, 200MP cameras, and 144Hz displays appeared first on xda-developers.



from xda-developers https://ift.tt/2PbbaBL
via IFTTT

Samsung Galaxy Note 10 Lite/Galaxy A81 renders show familiar camera design and S Pen

With the Galaxy S11 series on the horizon, there are a couple of other interesting Samsung devices showing up. We recently got our first look a the Samsung Galaxy S10 Lite (or Galaxy A91) after it was confirmed by an FCC listing. There was also a rumor about a Galaxy Note 10 Lite back in October, and now we’re getting our first look at that device as well.

Like the Galaxy S10 Lite/A91, this device is also going by two names right now. @OnLeaks has shared renders of a device that could be called the Galaxy A81 or Galaxy Note 10 Lite. There are only two renders of the device and not a lot of details are visible. We can make out a few key features, however.

First and foremost, the camera arrangement looks very similar to what we’ve seen from the Galaxy S11 series and the Galaxy S10 Lite. According to rumors from Ishan Agarwal, the square housing will contain 3 cameras and a flash, though there’s no word on MP sizes. Speaking of cameras, it appears to have a single centered hole-punch camera on the front.

The second important feature we can see is the S Pen. We can see a 3.5mm headphone jack, speaker grill, and the S Pen docked in the bottom edge. The S Pen is obviously a big part of what makes a Note a Note, and having it in the “Lite” model is great. It will be useful for drawing on the 6.5-6.7-inch mostly flat display. There may also be a fingerprint sensor underneath the display.

There aren’t a lot of other specifications to go on right now. Some rough rumors claim it will be powered by 2018’s Exynos 9810, which was in the Galaxy Note 9 series. That would be a definite step down from the flagship Galaxy Note 10 and reason for the “Lite” nametag. It may also launch with 6GB of RAM and Android 10.


Source: 91mobiles

The post Samsung Galaxy Note 10 Lite/Galaxy A81 renders show familiar camera design and S Pen appeared first on xda-developers.



from xda-developers https://ift.tt/361rdJ6
via IFTTT

[Update 2: Leaves Beta] Google tests Scheduling and Taking a Break from Focus Mode in Digital Wellbeing

Update 2 (12/4/19 @ 10:10 AM ET): Focus Mode along with Schedules and “Take a break” for Digital Wellbeing has left beta and is rolling out widely.

Update 1 (11/4/19 @ 11:10 AM ET): As discovered last week, Digital Wellbeing is getting schedules for Focus Mode and it’s rolling out now.

Back at Google I/O earlier this year, Google unveiled new features for Digital Wellbeing, the company’s digital wellness tool that’s now required on all Android devices. The most notable of the two features is Focus Mode, a toggle that blocks access to selected apps to eliminate distractions. In its current implementation, Focus Mode is fairly basic as it can only be manually toggled from within Digital Wellbeing or from a Quick Settings tile. However, we’ve enabled two new enhancements to Focus Mode in the latest Digital Wellbeing beta that should make it more useful.

An APK teardown can often predict features that may arrive in a future update of an application, but it is possible that any of the features we mention here may not make it in a future release. This is because these features are currently unimplemented in the live build and may be pulled at any time by the developers in a future build.

Scheduling

As we spotted late last month, Google is working on a scheduling feature for Focus Mode. Once this feature goes live, you’ll be able to choose a start and end time as well as the days of the week during which you want Digital Wellbeing to automatically enable Focus Mode. About a minute before entering Focus Mode, Digital Wellbeing will post a notification asking if you’re “ready to focus.” You can either wait a minute to let Focus Mode automatically start, or you can tap on the “wait” action to postpone Focus Mode for 10 minutes. Once Focus Mode starts, the notification text updates to tell you when it’ll automatically turn off. The Focus Mode Quick Setting tile also shows scheduling information in the subtext.

Digital Wellbeing Focus Mode Schedule

Taking a break

If you noticed in the last screenshot above, there’s a new “Take a Break” action in the Focus Mode notification. This feature, as we previously covered, was first spotted by Jane Manchun Wong through her analysis of Digital Wellbeing. The “take a break” action lets you take a 5, 15, or 30 minute-long break from Focus Mode. There’s not much of a point in taking a break when manually toggling Focus Mode, but it may come in handy when you’ve set up a schedule that you generally want to stick with but simply can’t at the moment.

Digital Wellbeing Focus Mode break

Neither feature is currently live in Digital Wellbeing on any of the other devices that I have. Since these features are fully implemented, it shouldn’t take long for them to rollout. We’ll let you know when that happens.

Thanks to PNF Software for providing us a license to use JEB Decompiler, a professional-grade reverse engineering tool for Android applications.


Update 2: Rolling Out

As we discovered in the APK teardown last week, Digital Wellbeing is getting new schedules for Focus Mode. You can schedule Focus Mode to be enabled at certain times. And because sometimes you’ll need to get through Focus Mode for a brief moment, you can “Take a break” (temporarily disable Focus Mode) for 5, 15, or 30 minutes. This can be done from within Digital Wellbeing or the notification shade.

Google is positioning Focus Mode as a way to block distractions to focus on a task, but this mode can also be used as an app blocker. There are 3rd-party apps in the Play Store that allow you to block apps during specific times of the day. For example, maybe you want to block social media apps on the weekend so you don’t use your phone as much. Focus Mode’s schedules make that possible on the system level.

Join the beta for Digital Wellbeing to get these features, or download version 1.02752 from APK Mirror.

Via: Android Police


Update 2: Leaves Beta

Focus Mode for Digital Wellbeing is now leaving beta along with the recently added “Take a break” and Schedules features. Focus Mode arrived in beta back in August, and the aforementioned features were included last month. All of this is now available in the stable version and is rolling out widely to any device that can install it.

Digital Wellbeing (Free, Google Play) →

Via: Android Police

The post [Update 2: Leaves Beta] Google tests Scheduling and Taking a Break from Focus Mode in Digital Wellbeing appeared first on xda-developers.



from xda-developers https://ift.tt/2MTLDgc
via IFTTT